Question		Answer	Marks	Guidance	Question	
$\mathbf{1}$	(i)	$-31+6 \sqrt{5}$		B2 for -31 or $\mathbf{B 1}$ for $9-40$ or $\mathbf{S C 1}$ for 49 and $\mathbf{B 1}$ for $6 \sqrt{5}$		
$\mathbf{1}$	(ii)		$22 \sqrt{2}$		if 0 , allow $\mathbf{M 1}$ for three terms correct in $9-6 \sqrt{5}+12 \sqrt{5}-40$	

| 2 | (i) | | $61-28 \sqrt{3}$ | 3 | B2 for 61 or B1 for 49 +12 found in
 expansion (may be in a grid)
 and B1 for $-28 \sqrt{3}$ |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- |
| if B0, allow M1 for at least three terms | | | | | |
| correct in $49-14 \sqrt{3}-14 \sqrt{3}+12$ | | | | | |
| the correct answer obtained then spoilt earns | | | | | |
| SC2 only | | | | | |$\quad\left\{\begin{array}{l}\text { [3] }\end{array}\right.$

4	(i)		5^{35} oe or $k=7 / 2$ oe	2	[2]	
$\mathbf{4}$	(ii)		attempting to multiply numerator and denominator of fraction by $1+2 \sqrt{5}$ reference to 125			

5	(i)	$9 \sqrt{3}$ www oe as final answer	2 [2]	M1 for $\sqrt{48}=4 \sqrt{3}$ or $\sqrt{75}=5 \sqrt{3}$ soi	
5	(ii)	$\frac{39+7 \sqrt{5}}{44}$ www as final answer	3 [3]	M1 for attempt to multiply numerator and denominator by $7-\sqrt{5}$ B1 for each of numerator and denominator correct (must be simplified)	condone $\frac{39}{44}+\frac{7 \sqrt{5}}{44}$ for 3 marks eg M0B1 if denominator correctly rationalised to 44 but numerator not multiplied

Question		er	Marks	Guidance	
7	(i)	$23+\sqrt{2}$ as final answer	3 [3]	B2 for 23 and B1 for $\sqrt{2}$ or $1 \sqrt{2}$ or $\overline{\mathrm{M}} 2$ for 3 or more terms correct of $35-14 \sqrt{2}+15 \sqrt{2}-12$ or M1 for 2 terms correct	mark one scheme or other, but not a mixture, to advantage of candidate $\text { eg M2 for } 35+\sqrt{2}+24$
7	(ii)	$5 \sqrt{6}$ isw	2 [2]	condone $\frac{30}{\sqrt{6}}$ for 2 marks M1 for $[\sqrt{54}=] 3 \sqrt{6}$ or $\left[\frac{12}{\sqrt{6}}=\right] 2 \sqrt{6}$	eg 2 isw for $5 \sqrt{6}=\sqrt{150}$

$$
\begin{aligned}
& 8 \\
& \frac{3 V}{\pi r^{2}}=\sqrt{l^{2}-r^{2}} \\
& \left(\frac{3 V}{\pi r^{2}}\right)^{2}=l^{2}-r^{2} \\
& l^{2}=\left(\frac{3 V}{\pi r^{2}}\right)^{2}+r^{2} \\
& {[l=] \sqrt{\left(\frac{3 V}{\pi r^{2}}\right)^{2}+r^{2}}}
\end{aligned}
$$

for correctly getting non- ${ }^{\prime} l^{2}-r^{2}$ ' terms on other side[M0 for 'triple decker' fraction]
oe or ft; for squaring correctly
oe or ft ; for getting l term as subject
oe. or ft ; mark final answer; for finding square root (and dealing correctly with coefficient of l term if needed at this stage); condone $\pm \sqrt{ }$ etc
may be done in several steps, if so, condone omission of brackets in eg $9 V^{2}=\pi^{2} r^{4} l^{2}-r^{2}$ if they recover - if not, do not give $1^{\text {st }} \mathbf{M 1}$ [but can earn the $2^{\text {nd }} \mathbf{M} 1$]
for combined steps, allow credit for correct process where possible;
eg $\pi^{2} r^{4} l^{2}$ as the term on one side
For M4, the final expression must be totally correct, [condoning omission of l and insertion of \pm]
eg M4 for $\frac{\sqrt{9 V^{2}+\pi^{2} r^{6}}}{\pi r^{2}}$

9 (i)	$7 \sqrt{3}$	$\mathbf{2}$	M1 for $\sqrt{48}=4 \sqrt{3}$ or $\sqrt{27}=3 \sqrt{3}$
$\mathbf{9}$ (ii)	$\frac{10+15 \sqrt{2}}{7}$ www isw	$\mathbf{3}$	B1 for $7[\mathbf{B} 0$ for 7 wrongly obtained $]$ and $\mathbf{B 2}$ for $10+15 \sqrt{2}$ or $\mathbf{B 1}$ for one term of numerator correct; if $\mathbf{B 0}$, then $\mathbf{M 1}$ for attempt to multiply num and denom by $3+\sqrt{2}$

| 10 | (i) 2 www | 2 | M 1 for $4 / 6$ or for $\sqrt{48}=2 \sqrt{12}$ or $4 \sqrt{3}$ or |
| :--- | :--- | :--- | :--- | :--- |
| | (ii) $43-30 \sqrt{2}$ www as final
 answer | 3 | $\sqrt{27}=3 \sqrt{3}$ or $\sqrt{108}=3 \sqrt{12}$ or for $\sqrt{\frac{4}{9}}$ |

$\mathbf{1 1}$	(i) $9 \sqrt{3}$ 2 (ii) 6 $\sqrt{ } 2 \mathrm{www}$	3	M1 for $5 \sqrt{ } 3$ or $4 \sqrt{ } 3$ seen M1 for attempt to multiply num. and denom. by $3+\sqrt{2}$ and M1 for denom. 7 or $9-2$ soi from denom. mult by $3+\sqrt{2}$	5

| 12 | (i) $\frac{5-\sqrt{3}}{22}$ or $\frac{5+(-1) \sqrt{3}}{22}$ or $\frac{5-1 \sqrt{3}}{22}$ | 2 | or $a=5, b=-1, c=22 ;$ M1 for attempt
 to multiply numerator and denominator
 by $5-\sqrt{3}$ |
| :--- | :--- | :--- | :--- | :--- |
| (ii) $-12 \sqrt{ } 7$ isw www | | | |
| 2 for 37 and 1 for $-12 \sqrt{ } 7$ or M1 for 3 | | | |
| correct terms from $9-6 \sqrt{ }-6 \sqrt{ }+28$ | | | |
| or $9-3 \sqrt{ } 28-3 \sqrt{ } 28+28$ or $9-\sqrt{ } 252-$ | | | |
| $\sqrt{252+28 \text { o.e. eg using } 2 \sqrt{ } 63}$or M2 for $9-12 \sqrt{ } 7+28$ or $9-6 \sqrt{ } 28+$
 28 or $9-2 \sqrt{ } 252+28$ or $9-\sqrt{ } 1008+$
 28 o.e.; 3 for $37-\sqrt{ } 1008$ but not other
 equivs | 5 | | |

13	$[v=][\pm] \sqrt{\frac{2 E}{m}}$ www	3	M2 for $v^{2}=\frac{2 E}{m}$ or for $[v=][\pm] \sqrt{\frac{E}{\frac{1}{2} m}}$ or $M 1$ for a correct constructive first step and M1 for $v=[\pm] \sqrt{k}$ ft their $v^{2}=k ;$ if M0 then SC 1 for $\sqrt{E} / 1 / 2 \mathrm{~m}$ or $\sqrt{ } 2 E / m$ etc	3

14	$t=[\pm] \sqrt{\frac{2 s}{a}}$ o.	3	B 2 for t omitted or $t=\sqrt{\frac{s}{\frac{1}{2} a}} \mathrm{o}$.		
M1 for correct constructive first step in					
rearrangement and M1 (indep) for finding					
sq rt of their t^{2}				$\quad 3$	3
:---					

15	(i) $\sqrt{2}$ or $\sqrt{ } 8$ (ii) $-12 \sqrt{ } 5$	2 3	M1 for $7 \sqrt{ } 2$ or $5 \sqrt{ } 2$ seen M1 for attempt to multiply num. and denom. by $2-\sqrt{ } 5$ and M1 (dep) for denom -1 or $4-5$ soi or for numerator $12 \sqrt{ } 5-30$	5

\(\left.\begin{array}{|l|l|l|l|l|}\hline 16 \& {[r]=[\pm] \sqrt{\frac{3 V}{\pi h}} o.e. 'double-decke} \& 3 \& 2 for r^{2}=\frac{3 V}{\pi h} or r=\sqrt{\frac{V}{\frac{1}{3} \pi h}} o.e. or \\
for correct constructive first step or for \\

r=\sqrt{k} ft their r^{2}=k\end{array}\right\} 3\)| 3 |
| :--- |

| $\mathbf{1 7}$ | (i) $\sqrt{2}$
 (ii) $\frac{1}{11}+\frac{2}{11} \sqrt{3}$ or $\frac{3}{33}+\frac{6}{33} \sqrt{3}$ or
 mixture of these
 3 | M1 for $\sqrt{ } 8=2 \sqrt{ } 2$ or $\sqrt{ } 50=5 \sqrt{ } 2$ soi
 B1 for $6 \sqrt{ } 50$ or other correct $a \sqrt{ } b$
 M1 for mult num and denom by
 $6+\sqrt{3}$
 and M1 for denom $=11$ or 33 | 5 |
| :--- | :--- | :--- | :--- | :--- |

