(Juesti o	n	Answer	Marks	Guidance	Question
1	(i)		$-31 + 6\sqrt{5}$		B2 for -31 or B1 for 9 – 40 or SC1 for 49	
					and B1 for $6\sqrt{5}$	
					if 0, allow M1 for three terms correct in	
					$9-6\sqrt{5}+12\sqrt{5}-40$	
				[3]		
1	(ii)		$22\sqrt{2}$	2	M1 for $\sqrt{72} = 6\sqrt{2}$ soi or for $\frac{32}{\sqrt{2}} = 16\sqrt{2}$	
					soi or for $\frac{12+32}{\sqrt{2}}$ oe	
				[2]		

2	(i)	$61 - 28\sqrt{3}$	3	B2 for 61 or B1 for 49 + 12 found in expansion (may be in a grid)	
				and B1 for $-28\sqrt{3}$	
				if B0, allow M1 for at least three terms correct in $49-14\sqrt{3}-14\sqrt{3}+12$	
				the correct answer obtained then spoilt earns SC2 only	
			[3]		
2	(ii)	$4\sqrt{3}$	2	M1 for $\sqrt{50} = 5\sqrt{2}$ or $\sqrt{300} = 10\sqrt{3}$ or	
				$20\sqrt{300} = 200\sqrt{3}$ or $\sqrt{48} = 2\sqrt{12}$ seen	
			[2]		

3	$r = \sqrt{\frac{3V}{\pi(a+b)}}$ oe www as final answer	3	M1 for dealing correctly with 3	M0 if triple-decker fraction, at the stage where it happens, then ft;
			and M1 for dealing correctly with $\pi(a + b)$, ft	condone missing bracket at rh end
			and M1 for correctly finding square root, ft <i>their</i> ' r^2 ='; square root symbol must extend	M0 if \pm or <i>r</i> >
			below the fraction line	for M3, final answer must be correct
		[3]		

4	(i)	5^{35} oe or $k = 7/2$ oe	2 [2]	M1 for $125 = 5^3$ or $\sqrt{5} = 5^{\frac{1}{2}}$ soi	M0 for just answer of 5 ³ with no reference to 125
4	(ii)	attempting to multiply numerator and denominator of fraction by $1+2\sqrt{5}$ denominator = -19 soi	M1 M1	must be obtained correctly, but independent of first M1	some cands are incorporating the $10 + 7\sqrt{5}$ into the fraction. The M1s are available even if this is done wrongly or if $10 + 7\sqrt{5}$ is also multiplied by $1 + 2\sqrt{5}$ eg M1 for denominator of 19 with a minus sign in front of whole expression or with attempt to change signs in numerator
		$8+3\sqrt{5}$	A1 [3]		

5	(i)	$9\sqrt{3}$ www oe as final answer	2	M1 for $\sqrt{48} = 4\sqrt{3}$ or $\sqrt{75} = 5\sqrt{3}$ soi	
			[2]		
5	(ii)	$\frac{39 + 7\sqrt{5}}{44}$ www as final answer	3	M1 for attempt to multiply numerator and denominator by $7 - \sqrt{5}$ B1 for each of numerator and denominator correct (must be simplified)	condone $\frac{39}{44} + \frac{7\sqrt{5}}{44}$ for 3 marks eg M0B1 if denominator correctly rationalised to 44 but numerator not multiplied
			[3]		

6		$[b=]\pm\sqrt{\frac{3a}{2c}}$ oe www	3	M2 for $[b^2 =] \frac{3a}{2c}$ soi	eg M2 for $[b=]\sqrt{\frac{3a}{2c}}$
				or M1 for other $[b^2 =] \frac{ka}{c}$ or $[b^2 =] \frac{a}{kc}$ oe	allow M1 for a triple-decker or quadruple-decker fraction or decimals eg $\frac{1.5a}{c}$, if no recovery later
			[3]	and M1 for correctly taking the square root of their b^2 , including the ± sign;	square root must extend below the fraction line

C	uestion	er	Marks	Guidance		
7	(i)	$23 + \sqrt{2}$ as final answer	3 [3]	B2 for 23 and B1 for $\sqrt{2}$ or $1\sqrt{2}$ or M2 for 3 or more terms correct of $35-14\sqrt{2}+15\sqrt{2}-12$ or M1 for 2 terms correct	mark one scheme or other, but not a mixture, to advantage of candidate eg M2 for $35 + \sqrt{2} + 24$	
7	(ii)	5√6 isw	2 [2]	condone $\frac{30}{\sqrt{6}}$ for 2 marks M1 for $\left[\sqrt{54}\right] = 3\sqrt{6}$ or $\left[\frac{12}{\sqrt{6}}\right] = 2\sqrt{6}$	eg 2 isw for $5\sqrt{6} = \sqrt{150}$	

8	$\frac{3V}{\pi r^2} = \sqrt{l^2 - r^2}$	M1	for correctly getting non- $l^2 - r^2$ terms on other side[M0 for 'triple decker' fraction]	may be done in several steps, if so, condone omission of brackets in eg $9V^2 = \pi^2 r^4 l^2 - r^2$ if they recover – if not, do not give 1 st M1 [but can earn the 2 nd M1]
	$\left(\frac{3V}{\pi r^2}\right)^2 = l^2 - r^2$	M1	oe or ft; for squaring correctly	for combined steps, allow credit for correct process where possible;
	$l^2 = \left(\frac{3V}{\pi r^2}\right)^2 + r^2$	M1	oe or ft; for getting l term as subject	eg $\pi^2 r^4 l^2$ as the term on one side
	$[l=]\sqrt{\left(\frac{3V}{\pi r^2}\right)^2 + r^2}$	M1	oe. or ft; mark final answer; for finding square root (and dealing correctly with coefficient of <i>l</i> term if needed at this stage); condone $\pm \sqrt{\text{etc}}$	For M4 , the final expression must be totally correct, [condoning omission of <i>l</i> and insertion of ±] eg M4 for $\frac{\sqrt{9V^2 + \pi^2 r^6}}{\pi r^2}$

9 (i)	7\sqrt{3}	2	M1 for $\sqrt{48} = 4\sqrt{3}$ or $\sqrt{27} = 3\sqrt{3}$
9 (ii)	$\frac{10+15\sqrt{2}}{7}$ www isw	3	B1 for 7 [B0 for 7 wrongly obtained] and B2 for $10+15\sqrt{2}$ or B1 for one term of numerator correct; if B0 , then M1 for attempt to multiply num and denom by $3+\sqrt{2}$

10	(i) 2 www	2	M1 for 4/6 or for $\sqrt{48} = 2\sqrt{12}$ or $4\sqrt{3}$ or	
	_		$\sqrt{27} = 3\sqrt{3}$ or $\sqrt{108} = 3\sqrt{12}$ or for $\sqrt{\frac{4}{9}}$	
	(ii) 43 – 30 $\sqrt{2}$ www as final answer	3	M2 for 3 terms correct of 25 – 15 $\sqrt{2}$ –	5
			$15\sqrt{2}$ + 18 soi, M1 for 2 terms correct	

11	(i) 9 √3	2	M1 for $5\sqrt{3}$ or $4\sqrt{3}$ seen	
	(ii) 6 $\sqrt{2}$ www	3	M1 for attempt to multiply num. and denom. by $3 + \sqrt{2}$ and M1 for denom. 7 or $9 - 2$ soi from denom. mult by $3 + \sqrt{2}$	5

12	(i) $\frac{5-\sqrt{3}}{22}$ or $\frac{5+(-1)\sqrt{3}}{22}$ or $\frac{5-1\sqrt{3}}{22}$	2	or $a = 5$, $b = -1$, $c = 22$; M1 for attempt to multiply numerator and denominator by $5 - \sqrt{3}$	
	(ii) – 12√7 isw www	3	2 for 37 and 1 for $-12\sqrt{7}$ or M1 for 3 correct terms from $9 - 6\sqrt{7} - 6\sqrt{7} + 28$ or $9 - 3\sqrt{28} - 3\sqrt{28} + 28$ or $9 - \sqrt{252} - \sqrt{252} + 28$ o.e. eg using $2\sqrt{63}$ or M2 for $9 - 12\sqrt{7} + 28$ or $9 - 6\sqrt{28} + 28$ or $9 - 2\sqrt{252} + 28$ or $9 - \sqrt{1008} + 28$ o.e.; 3 for $37 - \sqrt{1008}$ but not other equivs	5

13
$$[v=][\pm]\sqrt{\frac{2E}{m}}$$
 www

$$\begin{array}{c}
3\\
M2 \text{ for } v^2 = \frac{2E}{m} \text{ or for } [v=][\pm]\sqrt{\frac{E}{\frac{1}{2}m}} \text{ or}\\
M1 \text{ for a correct constructive first step}\\
and M1 \text{ for } v=[\pm]\sqrt{k} \text{ ft their } v^2 = k;\\
\text{if M0 then SC1 for } \sqrt{E}/\frac{1}{2}m \text{ or } \sqrt{2E/m}\\
\text{etc}
\end{array}$$

14	$t = [\pm] \sqrt{\frac{2s}{a}} o.$	3	B2 for <i>t</i> omitted or $t = \sqrt{\frac{s}{\frac{1}{2}a}}$ o.	
			M1 for correct constructive first step in rearrangement and M1 (indep) for finding sq rt of their t^2	3

15	(i) $\sqrt{2}$ or $\sqrt{8}$	2	M1 for $7\sqrt{2}$ or $5\sqrt{2}$ seen	
	(ii) −12√5	3	M1 for attempt to multiply num. and denom. by $2 - \sqrt{5}$ and M1 (dep) for denom -1 or $4 - 5$ soi or for numerator $12\sqrt{5} - 30$	5

16	$[r] = [\pm] \sqrt{\frac{3V}{\pi h}}$ o.e. 'double-decke	3	2 for $r^2 = \frac{3V}{\pi h}$ or $r = \sqrt{\frac{V}{\frac{1}{3}\pi h}}$ o.e. or	
			for correct constructive first step or for $r = \sqrt{k}$ ft their $r^2 = k$	3

17 (i) $\sqrt{2}$ (ii) $\frac{1}{11} + \frac{2}{11}\sqrt{3}$ or $\frac{3}{33} + \frac{6}{33}\sqrt{3}$ or mixture of these	2 3	M1 for $\sqrt{8}=2\sqrt{2}$ or $\sqrt{50}=5\sqrt{2}$ soi B1 for $6\sqrt{50}$ or other correct $a\sqrt{b}$ M1 for mult num and denom by $6+\sqrt{3}$ and M1 for denom = 11 or 33	5	
--	--------	---	---	--